ON SIPHONAP'PERA COLLECTED IN ALGERIA.

By K. Jordan, Ph.D., and the Mon. N. Charles Rothscimld, m.a.

> (Plates V1.-N1I.).

DURING the spring of the present year (1012) the Hon. L. W. Rothschild and the senior anthor of this paper again paid a visit to Algeria, chiefly with a view to collecting Lepidoptera. As the British Musenm had hardly any small mammals from the coast district and the Central Plateanx, and as, moreover, very little was known of the Siphonaptera of Algeria, some time was devoted during the visit to collecting mammalia and their ectoparasites, with the result that 160 -odd skins belonging to 16 species were bronght home, as well as a fairly large number of fleas and other parasites.

The collections were made in four localities-Alger, Hammum Rirha, Guelt-esStel, and Khenchela-the first two places being sitnated in Northern Algeria and the other two on the Central Plateaux. The strong physiographical contrast which exists on the one hand between the morthern district of Algeria (i.e. the coast inclnsive of the northern monntain ranges) and on the other the high plains which are the centre of the country, and extend from west to east, has prodnced, as is well known, also most striking contrasts in the fana bad flora. The coast district is characterised by a good supply of water, luxuriant vegetation, cornfields and vineyards, the mountains being clad with forest. The mammals and fleas obtained at Alger and Hammam Rirha are identical, and from the look of the conntry we presume that the same species extend sonthward to the northern borders of the central plains as far as the same conditions of life prevail-to the neighhonrhood of Boghari, for instance. The traps intended for shrews and rolents (to be caught alive) were placed under the rank vegetation at the edges of fields aud meadows and in the hedges. The neighbourhool of Alger being much frequented, it was not always easy to find places where the traps were safe frem interference. As the traps, however, cau be eutirely covered up, and as also the butterfly net distracted the atteution of the Arabs who might happen to be looking on from a distance, few traps were stolen. The chiel hunting grounds near Alger were the large gardeu of Mrs. Beresford,* opposite Hotel Alexandra, the valley of the Femme Sanvage, and the fields between Birmandreils and the Chatean Hydra. The best places at Hammam Rirha were the roadsides and fields at the back of the Grand Hotel. The number of species collected is very small. The absence of the mole and all Arcicolidae from Algeria is interesting, as these mammals are not particularly rare in South Portugal. The various mammals were kiudly named for us by Mr. Oldfield Thomas, I'R.S.

I. ALGER AND HAMMAM RIRIIA.

1. Crocidura russula is quite common in phaces which are kept damp by the rank vegetation. I obtained more specimens of this shrew than of any other

[^0]mammal, with the exception of Mus algirus. It was the only species found chose to the edge of the hrook called La Femme sanvage. Shrews go into a trap of our construction whether it is baited or not. They rnu into the darl carity and, being of a worrying natnre, try to get ont at the elosed end, and this aceidentally spring the trap. At Hammam Rirha the species is most frequent under the rauk vegetation of the roadsides at the back of the hotel garden. No Sorex was met with.-k. J.
2. Mus alesandrinus.-A half-grown specimen was trapped in Mrs. Beresford's garden and another under a hedge near the Palace Hotel. According to the manager of the Graud Hotel at Hammam Rirha, rats are plentiful in the cellars of the hotel.-Ki. J.
3. Nus musculus.-'The few speeimens trapped in a honse at Mustapha Supérieur dil not differ in colouring from ordinary European examples, and their smell was just as bad. No fleas were found on them. At Hammam Rirha a few musculus were obtained in the fields at a considerable distance from the nearest honse. These specimens also were at once recognised by their smell when the thap was inspected.-K. J.
4. Mus algirus.-This is the field monse in Northern Algeria, and by far the commonest of all the rodents in that district, thongh it is less in evidence thau A. barbarus on acconnt of its small size. It is found in the gardens and everywhere at the roadsides, the edges of fields, and along walls constrncted of rongh stones. Althongh it resemhles in general appearance Jus musculus, it is at onee distinguished by the absence of the nanseous smell characterising I. musculuz and by the much shorter tail.-K. J.
5. Aporlemms sylcaticus is likewise common in the gardens and fields, frequenting the same places as M. algirus.-K. J.
6. Arcicunthis barbarus.-Tbis was the first time that I met with the Barbary rat at large. This pretty striped rodent occurred in the grardens and in much larger numbers in the fields near Alger as well as at Hammam Rirha, and is restrieted to the northern district of the conutry. The natives on the High Platean. did not know it-a sure sign that this conspicnous rodent does not occur there. It appears to be partial to corn-fields, at the edges of which most of our barbarus were ohtained.

At Hammam Rirha I also fonul the nest of the larbary rat at a spot where I had trapped a female which was in milk. Wheo going by the place the next day I heard a rather lond chirpiug in the barley-field. I followed the sound, expectiog to find a nest with young hungry birds, and was rather surprised to see, after some minutes' search, a small blind a. barburus at my feet, and a short distance away a second, botb erving incessantly. The nest was elose by. It consisted of dry grass, and was made in a slight depression of the gromd, being dome-shaped with a side-entrance, hut altogetber very loose and irregular in structure, looking more like a handful of short hay than a property made nest. There were apparently only these two habies. Several females when openel were funnd to contain from fonr to six embryos. The larbary rat is said to be quite common in the summer. Apart from the trapped specimens I only onee saw it at large, and that in day-time. I had apparently distnrbed it when feeding, and it ran along a fieldpath much as a rat runs, not jumping like Ipodemus sylcoticus.

The skin of A. burbarus is thick, bnt also very tender, particularly on the head, and it is not advisable to kill the specimens by throwing them on to the ground or knocking them against a hard surface, as one can safely do with M. culgirus and
A. syleaticus. When skinning a specimen, pnlling and pressing mast be avoided. The hair is smoother in yong specimens than in older ones, and their striping therefore more regular.-K. J.
7. Dipodillus campestris.-At Alger I only canght two specimens, both adult, in the fields between Châtean Hydra and Sidi-Yaya, and saw a third in day-time cross a main road, juruping like Apodemus syleaticus. I did not meet with the species at Hammam Rirha, where, however, our short stay was marred by bad weather, and trapping only done to a limited extent.-K. .).

II. GUELT-ES-STEL.

This place is sitnated hetween Boghari and Djelfa, in the centre of the High Platean. As the time was limited the natives were asked to bring in mammals alive, and thns we received quite a number of specimens. But, as is generally the case nuder such circnmstances, the result in Siphonaptera was not proportionate. If a mammal is canght by haud, or handled a good deal, the fleas leave it, as we have noticed ourselves at home with mice and moles treated in that way. However, some nests of mammals were also brought in with the young, and these gave better results. We examined abont two dozen live Elephuntimus roveti, which is fairly freqnent among the rocks, but did not find a single flea on them. The commonest mammal on the High Platean is undoubtedly Meriones shaut, whose borrows are fond everywhere under the Zizyphas boshes. I put out a number of traps in places where Crocidure migat possibly occur, but did not find a single specimen. The range of hills in which Guelt-es-Stel lies offers many localities physiographically different, and may well be worth exploring for a collector of mammals.

III. KHENCHELA.

The town of Khenchela is sitnated at the eastern extremity of the Anres Mountains in East Algeria. It is the termiuns of the railway crossing the plain of the Haracta tribe from Aïn-Beilda sonthward. We did not collect many mammals, as our time was fully occupied with the Lepidoptera, which were very abuudant. Besides Juculus orientalis and the inevitable Meriones shemi which the natives brought in, I trapped the following:

1. Crocidura russula. In the valley east of the town there is a plentifnl snyply of water-a decp brook ruming north, which contains a good amount of clear water even in the height of the dry season, and turus into a river during the rainy season. In the luxuriant vegetation of this valley russula appeared to be fairly abundant.-K. J.
2. Mus algivus was obtained in the same valley in small nombers.-K. J.
3. Mus musculus was apparently common in the town, and we also trapped it some distance away in an old Meriones burrow, aud among the ruins of a smaln house.-- K. J.
4. Dipodillus compustris, in a paler form than the one collected at Alger, was fonnd in traps set muder rocks and thorn-bushes, and a preguant female was obtained in a trap put into a fresh hurrow made mader a tuft of halfa grass. A young specimen was observed late at night when I returned from moth-collecting. It jumped like an Apodemus sylvaticus, for which I mistook it; but when I had
knocked it over with my cap the more hairy tail at once proved it to be a Dipodillus.

Fonr of the seventeen species of mammals which we collected in Algeria did not yield any fleas-namely, two species of bats (ont of three), the Hedgehor, and the Elephant-shrew. On the other thirteen species we fonnd thirteen different kinds of fleas, of which five are new species and one a new snbspecics. We dich not oltain Palex irritans, Ctenocephalus canis and felis, and Ceratophyllus gallinae, nor Leptopsylln musculi and Ceratophyllus fasciatus, which all nodonbtedly ocenr in the coast district, if not farther inland. We found only a single species of birtflea, which is a new subspecies, although we examined a nomber of nests of varions kinds. What surprised us most was the absence of fleas in the sparrows' nests which we took from under the roof of the Borlj at Gnelters-Stel, some of them being large nests which had apparently been nsed for years, and which in England wonld have been full of fringillue or gallinae. For the parpose of collecting mammals and fleas in Algeria (or elsewhere) the snmmer wontd be a more suitahle time than the spring, as then loth the mammals and their parasites are more plentiful, and the fleas in hirds' nests have hal time to breed and acenmulate. At Khenchela we had sparrows' nests taken down from poplar trees, these nests also proving empty of parasites.

Althongh fourteen different kinds of Siphonaptera* is a very small number for such a large and varied country as Algeria. and certaiuly represent much less than balf the species which oceur there, the collection is of some general interest as regards the distribntion of the Siphonaptera.

The most striking fact which can be gathered from looking over the list of captures is the entire absence of those species on the Hauts Plateanx which we found at Alger and Hammam Rirha, and vice versa. However, further search on Dipodillus cumpestris, which we may assume has a flea of its own, may possihly lead to the discovery of a species living on the dark coast race as well as on the lighter-colonred races of the High Plateans, and the martins' nests may harbonr the same species in the Northern districts as on the central plains, and the same may be the case with other mammals, and especially birds.

A further point worthy of being mentioned is the absence of the gems Tenopsylla from the coast districts, while this tropical and snbtropical genus is abondant on the High Plateanx, and, as we know from other sonrces, also in the Sahara. The now almost cosmopolitan \mathcal{X}. cheopis occurs, at least occasionally, on rats in the coast districts (cf. foot-note below).

The rest of the collection is a curions mixture of forms with either Palaearetio or Tropical aftinities. While, however, four of the species are also fomul in Europe, none are identical with tropical forms, apart from Xenopsylla. Ceratophyllus lacermi, found on the Hants Plateanx, Typhloceras poppei at Alger, and Stenoponio tripectinata as well as Ischnopsylla umipectinata from the Mants Plateans, ocenr likewise in Enrope, while three other species or subspecies are nearest to European forms, and fonr nearest to species from Egypt or Tropical Africa. On the whole, the Tropical affinities are predominant in contradistinction to other groups of

[^1]insects, and it strikes us as particularly interesting that the new Ctenophthalmus and the new Leptopsylla, both occurring at Alger and Hammam Rirha, are closely allied to species from Tropical Africa.

1. Xenopsylla cleopatrae Roths. (1903).

Palex clopuatree Rothechild, Eut. Mo. May. (2) xiv. p. 84. no. 3. tab. 1. fig. 7, 8. tıb. 2. Gig. 13, 17 (1903) (Shendi, Sudan).
$4 \delta^{\circ} \delta^{\prime}, 4$ of from Gnelt-es-Stel, off Meriones sheuvi, April 22 an: 23, 1912.
1 of from Gnelt-es-Stel, off Ictonyx libyca, April 21, 1912.

2. Xenopsylla chersinus Roths. (1906).

Pulex chersimes Rothschild, Entom. xxxix. p. 75. tab. 4. fiy. 1-3 (1903) (Khartum).
1 ofrom Guelt-es-Stel, in a nest of Dipus arientulis, April 22, 1912.

5 o + from Biskra, off Dipus spec., March 1908, collected by J. Steinbach.
The species was described from a single of, and the present two of of are the only examples which have come to hand since. They are distiugnished from J. nubicus particularly by the bristles of the onter process of the elasper being all situated at or near the apex. One of the two Algerian of d differs from the other as well as from the type-specimen in the smaller number of snbapical bristles on this process.

The $\circ+9$ are so close to those of X. nubicus and X. astice that we cannot at present distinguish them with absolnte certainty. The receptaculnm has the same shape in the three species. The bristles of the hind-tarsi are rather longer in chersinus than in the otber two species.

3. Xenopsylla ramesis Roths. (1904).

Pulex ramesis Rothschild, Entom. xxxvii. p. 2. no. 2. tıb. 1. fig. 3 (1904) (Lower Egypt).
$3 \delta^{\circ} \delta, 3$ o + from Guelt-es-Stel, off Jeriones showi, April 21 and $29,1912$. 4 ઈ゙ $\delta, 2$ 우 \circ from Khenchela, off Meriones shawi, May i aud $10,191 \%$.
4. Ceratophyllus barbarus spee. nov. (I'l. VI. figs. 1 and 2).

ठ ${ }^{\circ}$. Both sexes are very close to C. fasciatus Bosc. (1801), diflering ouly in the modified abdominal segments. Althongh the differences are not very striking, they appear to be constant, inasmuch as they are present in all the specimens of our long series of barbarus.

The finger of barbarus (Pl. VI. fig. 1, F) is one-sixth shorter than in true fusciutus, and the two large bristles placed at its distal margin have a distiuctly more ventral position in barbarus, the lower one placed exactly in the middle of the finger or a trifle helow it in burburus and above the centre in fasciatus, the distances being measnred in straight lines from the socket of the lower long bristle of the clasper to the mediau bristle, and from there to the
tip of the finger. The process of the clasper (Pl. VI. fig. 1, P) is more ronnded than in fasciatus, and its distal angle less sharp.

The seventh abdominal sternite of the female of briburus varies to some extent, as illnstrated by Pl. VI. fig. 2. As a rule, the apical margin of this segment is distinctly notehed below the mper angle, this angle being sometimes prodnced into an obtnse lobe; but in some specimens the noteh is almost entirely effacel, the apieal edge of the sternite being feebly bi-emarginate with the ronnded upper angle slightly projecting. ln fasciatus the seventh sternite is never notched and its upper angle never projects. The small bristles situated above the stigma of the eighth tergite are more mumerons in fasciatus than in harbarus.

The slightness of the distinctions between fasciatus and barbarus suggests that the two forms originally were geographical varieties of one species-i.e. that bubarus was the North African race aud fusciatus a European race of one single species.
C. fusciatus, apart from the specimens obtained from rats, appears to us to be geographically variable in Europe to some extent, as we hope to show in another place.
C. allatimis Roths. (1904), from tropical India, is another form very closely allied to fusciutus.

A large series of C. barbarus were obtained at Alger and Hammam Rirha on Arviconthes barbrorus, and also a small nomber of specimens at the same places on Aporlemus syleaticus and l/us algirus, bnt not one specimen on Crocidure russula.
5. Ceratophyllus laverani Roths. (1911) (Pl. VIII. fig. 6).
C. l. Rothschild, Am. Sci. Not. Zool. p. 209. text-fig. 1 and 2 (1911).

5 우, Gnelt-es-Stel, off Eliomys quercimus, April 19, 23, and 25, 191%.
1δ, Gnelt-es-Stel, off Meriones shati, April 25, 1012.
The ocenrrence on Meriones is no doubt accidental. The natives bronght us a small nmber of young Eliomys, some tueked away in their burnonses, and also many specimens of Meriones, so that it is quite possible that the larerani got on to the Meriones after the Meriones was canght. Onr text-fig. 3 is taken from an Algerian example. We do not notice any difference between European specimens of laceremi and these Algerian ones, which is evideuce in support of Mr. Oldfield 'Thomas's view that the specimens of Eliomys quercimus from the High Plateank of Algeria do not differ from European examples.

6. Ceratophyllus maurus spec. nov. (Pl. VIl. fig. 3, 4, and 5).

ठ早. Nearest to C. henleyi Roths. (1904), from which it is easily distingnished by the moditied abdominal segments. Both species are characterised by one or two of the apical bristles of the secoud hind-tarsal segment extending beyond the fourth segment, the fore-femnr bearing several small lateral bristles on the outer snrface, and the mil- and hind-coxae having less than ten bristles on the iuner surface (apart from the bristles placed at the anterior margin of the cosae). A combination of these three characters ocenrs only in henteyi and maurus of all the speeies of Ceratophyllus known to us. The males of maurus and henleyi, moreover, bear a mane on the thorax and proximal abdominal segments.

Head. - The frons is much more conver in the δ than in the $\%$, and bears in both sexes a row of three bristles in front of the eye. The npper one of these bristles is placed about on a level with the centre of the eye, and is long; the second bristle is moch smaller, while the third is abont as large as the first. In the of there are two more bristles above the first eye-bristle, bath being thinner and shorter. than the second anteocular bristle. The occiput bears one median bristle above the antennal groove, no bristle behind that groove, and a subapical row of five. The ventral bristle of this row is very long and accompanied below by an additional bristle, which is in the of as small as the small hairs placed along the antennal groove, whereas it has iu the $\%$ the size of the upper subapical bristles. There is a wide gap betweeu the long subapical bristle and the one above it. The rostrum reaches to the trochanter.

Thorax.-The pronotum bears a row of thirteen or forrteen bristles on the two sides together, the ventral bristle being very long and the two dorsal ones slightly more proximal in position than the others, particularly in the δ, which sex, moreover, has two or three small dorsal bristles in front of the row. The comb contains nineteen to twenty-two spines and an additional small spine on each side. All the spines end in a sharp point. The mesonotum has two rows of bristles and a number of dorsal bristles from the anterior row tu the base, as well as a row of minnte hais along the basal edge. In the of the dorsal bristles of the meso- and metanotnm, and of the first and second abdominal tergites are semi-erect, and, being more numerons and longer than is usual in Ceratophylli, represent a mane (Pl. VII. tig. 4). The small bairs near the anterior edge of the mesoplenra are nomerons, the o bearing about a dozen or more and the of nsually more than eighteen. The mesonotnm has abont a dozen setiform subapical spines on the iuside and the metanotnm fonr or five short, thick apical spines, on the t wo sides together. The metepimerum has five to seven bristles (2 or 3,2 or 3,1).

Addomen.-The first three or fonr tergites bear a few short apical spiues, and tergites i , to vi. are dorsally minutely dentate. The first tergite has two complete rows of bristles, and in the δ some additional dorsal bristles. On the tergites iii. to vii. the anterior row is much reduced in both sexes, but espacially so in the δ°. The stigmata are placed some distance in front of the ventrill bristle of the posterior row. The δ^{7} has two antepygidial bristles on a rather strougly prodnced cone, the npper bristle being short and obtnse and the lower one long. In the of there are three antepygidial bristles, of which the dorsal one is two-fifths and the ventral one five-sixths the length of the central bristle. The sternites of segments iii. to vi. bear on the two sides together eight or niue bristles in the δ and on an average eighteen in the 9 .

Legs.-All the femora have a single subajpical reutral bristle on the ontside, the fore-femur in addition a number of small hairs on the lateral onter surfice, while the mid- and hind-femora bear a row of bristles on the inside. This row coutains on the hind-femur six to nine liristles, apart from the subapical ventral one. The hind-tibia has a row of four to six lateral bristles on the inside, and a row of five fo seven (inclusive of the apical one) on the outside. One apical bristle of the first hind-tarsal segment reaches to the apex of the second segment, one of the secoud segment to the apex of the fourth segment and another bevond it. The proximal pair of bristles of the fifth tarsal segment is distiuctly moved on to the ventral surface, but is sitnated proximally to the second pair, not in between it. The relative leugths of the mid- and hind-tarsal segments are as follows:-

Mid-tarsus: © $10,18,11,9,17 ; ~$; 24, 21, 12, 0, 18.
Hind-tarsus : © $48,30,17,10,18$; $\uparrow 51,33,18,11,19$.
Modified Segmenta.- δ. The eighth tergite has an irregular row of small bristles from the lower end of the stigma upwards. The widened apical portion of this segment has four or fire bristles at the upper edge and fone to six on the side. The elaiper (Pl. VII. fig. 3) has a straight mambrimm (M) with the apex romnded. The process (P) of the clasper is broad and slort. The two bristles placed near the insertion of the finger (F) are thinner than the largest bristles of the eighth tergite. The movable process F greatly widens from the base npwards, being broadest beyond the centre. Its proximal edge is almost straight, apart from a central angle, while the distal margin is strongly convex beyoul the centre. The oblique upper portion of the distal margin is nothed in the middle and bears a moderately large bristle between this moteh and the upper proximal angle. Besides this bristle there are only a few very slender ones and some minute hairs on the finger. The ninth steruite (PI. VII. fig. 3, ix. st.) is of the type fonul in C.fasciutus and allies. The proximal lole of the exopolite of this segment bears two short strong spiniform bristles.
\&. The seventh stemite varies in ontline to a considerable extent, but its apical margin is alwars evenly incurvel, as shown in the figure (l'l. VII. fig. 5); the npper angle is either pointed or more or less ronnded off, and sometimes hardly projects as a lobe. The eighth tergite has numerons small bristles above the stigma, and two to fonr long ones helow it accompanied by one or two small ones. On the widened ventral portion of this tergite there are eight bristles along the ventral and apical edge on the outer surface, six or seven long lateral ones, and seven to fifteen small lateral bristles placed proximally to the long ones.

A series of both sexes was obtained, as follows:
$17 \delta \delta, 20$ of from Khenchela, off Merimess sherue, May 1912.

One of the khenchela $f \circ$ is a very interesting aberration, inasmuch as it throws light on the phylogenetic development of the bristles of the fifth tarsal segment. In the genus Ceratophyllus this segment bears five pairs of ventral lateral bristles, of which the first pair is freqnently placed on the ventral surface and sometimes even in between the second pair of bristles. Some genera not very distantly related to Cerctophyllus were originally chiefly separated from one another on accoment of the development of the plantar bristles. Veopsylla, for instance, was based ly Wagner maiuly on the fifth hind-tarsal segment bearing only four pairs of lateral bristles. The presence, alsence, and position of the first pair of these bristles are therefore considerel to be of important taxonomic value. Now, in the specimen of C. mourus referrel to above, all the tarsi have only fonr pairs of plantar bristles, as in Yeopsylla, with the exception of one mid-tarsus which has retained one bristle of the proximal pair lost in the other tarsi.
7. Ceratophyllus henleyi mauretanicus snbs]. nov. (PI. VIIl. fig. F and 9).

ठ i . The specimens from Southern Algeria differ slightly, thongh perceptibly, from those which we have from Egypt, and which are C. henleyi henleyi Roths. (1004). The eighth tergite of the of of (C. h. henteyi bears six bristles along the upper margin and eight or more on the side. In C.h. mauretenicus (Pl. VIII. fig. i) there are four bristles and a hair at the margin, and four to six at the sides, of which
two or three are small. The seventh abdominal sternite of the $\frac{q}{}$ varics in both subspecies individually, but there is on obvions difference in the shape of this segment in the two subspecies. The simus of the segment is shallow and the lobe ahove it short and broad in C. l. henleyi (Pl. VIII. fig. 8, a and b), while in ${ }^{C}$. h. mauretaniens the sinus is deeper, the upper lobe longer and the lower lobe (in side-view) also longer and much more pointed (P!. VIll. fig. 9, c and d).

The modified segments do not seem to present any other differences. We add that in our original figure of henleyi (Entom. 1904, pl. 2), the third bristle of the "finger" counted from the apex is rather too long.

We have of maurtanieus:
$1 \delta^{\circ}, 1$, from Khenchela, off Inipodillus cumpestris, May s and 9, 191~.
l J', 1 i, from Biskra, off Meriones shami, March 1018, collected by J. Steinbach.

8. Ceratophyllus farreni meridionalis subsp. nov. (PI. IX. fig. 10).

f. The three Algerian specimens, all females, which we have of C. furreni differ from the British examples in the shape of the seventh abdominal sternite. The sinus of this steruite is less deep and also narrower than in C. farreni furrent, and the lobes broader. In British specimens the sinus extends more or less close to the row of long bristles, one of the bristles often standing at the edge of the sinus, while in C. farreni merilionalis the distance of the apex of the sinus from the nearest bristle equals at least half the depth of the simus (Pl. IX. fig. 10). We figure for comparison a specimen from Scotland (Pl. IX. fig. 11).

3 ¢ , from Guelt-es-Stel, taken from nests of Chelidon urbiea meridionalis, April 24 and 25, 1912.

This is the only bird-flea which we met with. The chief interest attaching to C.f. meridionalis lies in the fact that its difference from the northeru form confirms the snbspecific distinctness of the Algerian Chelidon urbica.
9. Ctenophthalmus russulae spec. nov. (Pl. X. fig. $1 \approx$ and 13).

бf. Near to Ct. ansorgei Roths. (190i), triodontus Roths. (1907), and engis Roths. (1907), all from tropical Africa, but at onee distinguished from all three by the occiput bearing in the middle a single bristle placed above the antennal groove instead of a row of bristles.

Ct. ansorgei was originally described from two $\circ q q^{*}$. We now possess the o from the same place and host, and the genitalia of this sex prove that we were right in placing ansorgei near Ct. coueasica I'asch. (1880). All these species have three genal spines, the eye vestigial, the posterior apical bristle of the labial palpus long and strongly curved forward, the subapical ventral bristle of the hind-femor short and spiniform, and the fifth tarsal segment provided with three lateral ventral pairs of bristles, with an additional pair on the ventral surface in between the first pair.

Head.-The frons bears an anterior row of five bristles and a posterior row of three long ones. The vestigial eye is less pigmented than in C. ansorgei. The first spine of the genal comb is sharply pointed. The occipht bears a row of four bristles

[^2]running from the vertical part of the antennal groove across the pale lateral (sensory) dot towards the posterior dorsal pale dot. The two anterior bristles of this row corresponded to the anterior row uf ansorgei, and the two posterior ones to the upper bristles of the second row fond in that species. Above the antennal groove there is one long median bristle. The subapical row contains four bristles on each side, the interspace between the first and second being large.

Thorax.-The prothoras bears a row of nine long bristles on the two sides together, the row of the meso- and metathorax containing nine or ten bristles. The prothoracic comb consists of fifteen to serputeen sqines. The metepimerum bears usually five bristles (2,3), there being rarely au additional, small bristle present in the anterior row.

Abdomen.-The bristles of the abdomen are a little less nomerons than in ansorgei, the postmedian row of the central tergites containing usually twelve, rarely thirteeu long bristles. The difference in the nmober of bristles is especially noticable on the modified segments viii. to x. in the δ and vii. to x. in the 9.

Modified Segments.- δ°. The eighth tergite hears on each side two or three small bristles above the stigma. The eight sternite has a row of fonr or five long bristles, and proximally to the row three to five smaller bristles. The dorsal ontline of the sensury plate (pyidium) is alnost straight, the pyidinm not being conve. in this sex. The anal tergite is very little longer than the prgidimm and bears, on the two sides together, seventeen small bristles besides two longer apical ones. The clasper is distally divided ly a narrow rounded sinus into two short rounded lobes (Pl . X. fig. 12), of which the upper one (P^{1}) bears two very long and three much shorter and thimer hristles. Below the lower process $\left(\mathrm{P}^{2}\right)$ there is one long bristle at the edge of the clasper. The manbrimm (M) is narrowed quite gradually to a sharp point and evenly curved, the point being directed upwards. The general appearance and strncture of the movable finger (F) are essentially as in Ct. caucasica (and ansorgei), but the finger is much broader and shorter than in caucasica. It hears abont a dozen short bristles at the dorsal edge, three at the apex and fonr at the ventral margin. The ninth sternite (ix. st.) has a rather slender vertical arm, whose apex, however, is much widened, as shown in the figure. The horizontal arm is boat-shaped in a lateral aspect and bears many small bristles in the distal half.- \quad. The seventh sternite (Pl l. X . fig. 13 , vii. st.) is divided by a narrow sinus into a very broad trincate-emaryinate upper lobe and a small lower one, and bears a row of four or five bristles and proximally to it three or fone smaller ones. These hristles vary in size, but the two below the sinns always remain large. The eighth tergite bas no bristles above and below the stigma, in which character the present speeies agrees with triodontus and cingis, while ansorgei and cancusicu have some small bristles above the stigma. The ventral portion of the eighth tergite bears a wentral row of five bristles, of which the apical one is stont and short and the third the longest. Above this row there are three or four more bristles, the proximal ones being small aud the distal one large, the latter being phaced above the second of the ventral row. On the inner surface there is a clnster of four or five small bristles before the apex. The apical angle of this tergite is rounded off. The pygidium is convex as in the $\circ f$ of the allied species. The anal tergite is distinguished by bearing a row of three lateral bristles proximally to the stylet, the above-mentioned African species as well as cauctaicu having onty the ventral bristle of this row. The stylet is conical and abont thrice as long as it is broad at the base. The anal
sternite bears four bristles on each side, these bristles being slenderer than in the species named a hove, partienlarly the first and second bristles.

Length : $8.8-2 \mathrm{~mm}$., ㅇ $2-2.4 \mathrm{~mm}$.
We obtained a series of both sexes at Alger in Mareh, April, and May 1912, also some $\circ \circ$ in May ly08-altogether $18 \delta^{\circ} \delta$ and 279%. Most of the specimens were fond on 'rociduru messulic, and a few on Ihes algirus and Apodemus sylcaticus, and oue on Gerbillus ccmpestris. The ocenrrence on the last three hosts is donbtless accidental. Althongh we obtained a number of Crocidura russula at Hammam Rirha, as well as many J. celgirus and I. sylcaticus, the present species of flea was eonspicnons by its absence.

Rhadinopsylla gen. nov.

of Frons without tuherele, or this quite external, not placed in a groove. Autemal groove completely closed above, there being no sulcus across the vertex and the interual incrassation only being vestigial. A genal comb of five spines. Eye barely traceable. Labial palpi with five segments, the last segment posteriorly with a eurved apical hristle as in true Ctenoplethulubes. Pronotum with comb. Episternum of metathorax prolonged downwards, hind edge of sternum shortened; epimernm of metathorax narrower and dorsally more rounded than in Cterophthalmus, very densely striated ahove the ventral margin; its stigma mneh more frontal than in the allied forms, being placed nearly balt-way between the oblipne npper edge and the anterior edge of the metepimermm. Metanutum without the short strong apieal spines found on the proximal abdominal tergites, but with minnte teeth. No antepygidial bristles in the δ, but two on each side in $\%$, both being long. Pygidium strongly convex in both sexes. Legs slender, particnlarly the femora. Basal internal rod of mid-coxa broad, hearing a mesial earina and therefore somewhat recalling a shoulder-blade, the corresponding rod of the hind-coxa narrow and quite short. Hind-coxa with a patch of short spiniform bristles on the inuer surface. The fifth segment of all the tarsi with form pairs of lateral bristles as iu the hind-tarsas of trne Xeopsylla.

Genotype: R. masculuna spec. nov.
The geuns is elosely allied to both Neopsylle Waguer (1902) and Ctenophthalmus Kolen. (1856), but distiuguished by the characters mentioned above. Besides the type two other species belong here: pentacanthes Koths. (1897) and isacanthus Roths. (1907). They agree closely with masculana, but have the frons not prodnced into a sharp angle, whereas they bear a small frontal tnbercle, which is absent from masculana
10. Rhadinopsylla masculana spec. nov. (I'l. XI, fig, 14, 15 and 16).

Heced. - We figure the head of the $\%(\mathrm{PI} . \mathcal{N I}$. fig. 14). That of the δ diflers in the frons beiug more convex between antennal groove and frontal corner, and in the occiput being longer than in the $\%$. The frontal part of the head bears in both sexes au auterior row of six bristles as shown in the figure, aud between this row aud the comb two longer bristles. The first spine of the comb is the smallest, the last (or most dorsal) the broadest, and the third and fourth the longest. The autenual groove extends farther upwards in the of than in the + ; the optical dorsal ontline of the head is slightly iucrassate above the antenual groove, but not interrupted. The occipat has three rows of hristles. There is no row of short
bristles along the antemal groove. The eye is traceable at the base of the nppermost spine of the comb. The maxillary papus is as long as the rostrum or even a little longer, hoth reaching to the trochanter or close to the apex of the forecoxa. The apical segment of the labial papus is much shorter than the preceding one, being scarcely twice as long as broad. The bristle placed at the posterior corner of this segment is long and strongly eurvel. The first segment of the antema bears only a few short hars, and the lairs of the sceond segment are all short.

Thorax.-The comb of the pronotnm contains thirteen or fourteen spines, the ventral ones being mach shorter than the others and also placed farther away from the basal margin, so that the bases of the spines form a curved oblifnm line. The most ventral spine is placed at least as far from the lower edge of the pronotum as do the dorsal spines from the base of the pronotum. There is a single row of eight long bristles on the two siles of the pronotum together, the ventral bristle being nearer the base of the pronotum and the dorsal bristles nearer the comb. The dorsal spines of the comb are almost t wice as long as their distance from the base of the pronotnm. The mesonotum is as long as the pronotum inclusive of comb, and a very little longer than the metanotnm, and bears a pmstmedian row of ten long bristles on the two sides together. The surface between this row and the base is covered with numerous short bristles, with the exception of the ventral portion of the mesonotum. On the inner surface near the apex there is a dorsal bristle-like spine on each side. The mesopteura bear four long bristles and sometimes an additional small one. The metanotum has dorsally at the apical edge some minute teeth, but no spines like the abdominal tergites, and bears two rows of bristles, the anterior row containing nine to twelve smaller bristles, and the posterior row eight or nine long ones. The metanotum and metepistermm are externally almost entirely continoms. The portion corresponding to the episternum is so enlarged ventrad that it is longer in a dorsoventral direction than its distance from the insertion of the cosa. It bears one long and two smaller bristles, while the metasternum has one long bristle and one short one. The metepimernm has the upper angle romnded off, the proximal edge moderately rommed, and the distal edge wore strongly so. It bears an antemedian row of three bristles and farther upwards a postmedian row of three longer ones, the stigma being. placed between the two dorsal bristles of the seeond row. This stigma is larger than the abdominal ones. Near the ventral margin of the metepimernm, from near the insertion of the cona obliqnely backwards there is a space which bears, instead of the ordinary nudnate or angulate ridges characterising the exoskeleton of Siphonaptera, numerous regular parallel ridges, some of which are contintous with the ordinary ridges of the rest of the metepimernm.

Abdomen.-Tergites i. to vi. bear short but strongly chitimised apical spines as follows on the two sides torether : in o $^{6} 6,6,6,4,2,2$, and in $\circ f, 6,4,2,2,2$; i. to vii. have two rows of bristles, the second row contained on the two sides together $8,12,12,12,12,12,10$. The stigmata are phaced between the two lower bristles of the second row ; they are elougate and but little broaler than the groove of insertion of the lowest bristle. The $\&$ hears two long antepygidial bristles on a common truncate prominence. The edge of the segment is produced dorsally, i.e. in between the antepygidial pairs of bristles, and sinuate below these bristles, the edge being slightly convex below the sinns and then oblique and almost straight. In the of the seventh tergite resembles the preceding ones, the row of lourg
bristles being situated in the centre of the segment and there being no antepygidial bristles. The bristles of the sternites are long, the numbers being as follows on the two sides together: in $\delta 2,6,8,8,8,7$; and in $\mathfrak{\sim} 2,9,11,10,11$, sternites iii. to vi. of the of bearing on each side one loristle in front of the row, and sternite vii. having altogether seventeen bristles. The pygidinm is strongly convex, projecting backwards.

Legs.-The sabapical simes at the hind-side of the mid-coxa is semicircnlar, the angle above it being but slightly ronnded off and the hindmargin of the mid-coxa almost straight; the apical lobe of the mid-cosa is large, and there are two bristles on its base at some distance from the sinus. The hind-coxa bears a patch of abont ten short spiniform bristles on the inside at the apical third, those bristles of this patch which are nearest the anterior edge of the cowa being longer and thiuner, and those placed between the patch and the apex of the coxa being normal in shape. The posterior subapical sinns of the hind-coxa is shallower than in the mid-cosa, and the apical lobe longer. This lobe bears three long bristles. The femora are slender, the proportional length and width of the hind-femmr being 21 and 8 respectively, and bear one bristle on the inner lateral surface towards the base. There are two subapical rentral bristles on the outside of the hind-femur and one on the inside, all long and slender. The tibiae have six dorsal notehes inclnsive of the apical one, eacli bearing a pair of divergent bristles, there being sometimes an additional solitary dorsal bristle between the fourth and fifth pairs of the hind-tibia. A row of six lateral hristles on the onter surface corresponds with the dorsal notches. The longest ventral apical bristle of the mid-tibia and the longest dorsal apical bristle of the hind-tibia reach far heyond the apex of the first tarsal segment. The bristles of the tibiae and those of the hind-tarsus are very strong. The longest one of the first hind-tarsal segment extends beyond the apex of the second scgment and the corresponding hristle of the second reaches a little beyond the fourth. The mid-tarsi of the δ are broken. The tarsal segments measnre:
δ hind-tarsus $33,31,13,10,19$.
\& mid-tarsus $18,16,9,7,18$; hind-tarsus $40,24,14,11,20$.
The fourth hind-tarsal segment is twice as long as it is broad. The four ventral pairs of bristles of the fifth segment are quite lateral, the first pair not being moved on to the ventral surface.

Morlified segments.- δ. The eighth tergite bears no bristles. The cavity of the stigma is large, nearly horizontal, and almost gradually narrows inwards. The eighth sternite is large and has a transverse row of eight bristles on the two sides together. The clasper is longer than it is broad, with the dorsal and ventral margins almost parallel (Pl. X1. fig. 12), the distal margin slanting upwards, the lower angle quite effaced and the upper one extended to uear the apex of the " finger " (Pl. X1. fig. 15, P). The clasper bears one moderately strong hristle below the insertion of the finger, a small and thin one above the insertion, and several other thin ones at and near the apex of the process I'. Moreover, there are several larger bristles at the dorsal margin, one of which is particularly strong and long. The manubrinm (M) is broad proximally and narrow distally, its ventral margin being moderately conve.. The finger (Pl. XI. fig. 15, F) is narrow, evenly curved, somewhat tapering, with the distal side convex. The bristles are all thin and short, the one placed in the centre of the cistal snrface leing the longest. The ninth sternite is boomerang-shaped ; the ventral, horizontal portion is particularly
broad proximally and gradually tapers to a point distally, the dorsal margin being slightly incurved and the ventral margin gradually romnded. This sternite bears numerous small bristles, as shown in the figure. The anal segment is separated from the prgidimm by distinct suture, the tergite being convex in the centre and bearing here a number of long bristles.
i. The modified segments of this sex are very interesting. The seventh sternite bears eight or nine bristles on each side, amd is divided by a deep and very narrow sinus into two lobes (Pl. XI. fig. 16). The npper lobe, which is incomplete in our specimens, is strongly chitinised, with the ridges umusually prominent. It is undonbtedly rounded at the apex when in a perfect condition. The lower lobe is much narrower and tapers to a point (lateral aspeet). The eighth tergite has no bristles above the stirma, bat bears two or three below it, the lower one of them being long. The ventral lateral portion is divided by a narrow apical sinns, much as in Steroponiu tripectinctu Tirab. (1902), and bears above this sinns two long bristles on the onter surface and four shorter ones on the inside. The onter surface, moreover, has a subventral row of five long bristles and above this row five more bristles. The anal tergite is not divided by a suture from the very strongly convex pygidium, but is also convex in the centre as in the δ and bears here long bristles. The stylet is slender, being fone times as long as it is broad and about equal in length to the third hind-tarsal segment. The receptaculum seminis (Pl. XI. fig. 10 rec.) is characterised by the head not being moch wider than the beginning of the tail, and the aper of the tail being strongly chitinised and separated from the rest of the tail by a constriction.

Length (monnted specimens) : of $1 \% \mathrm{~mm}$. $\frac{9}{9} \stackrel{2}{\sim} \mathrm{~mm}$.
$1 \delta^{\circ}$ and $\because \circ$ 早, from Khenchela, off Merioncs shaut, early May 1912.
1 , from Guelt-es-Stel, off Meriones shawi, late April 1912.

11. Typhloceras poppei Wagu. (1902).

T. p. Wagner, Ilor. Suc. Ent. Ross. xxxvi. p. 154 (1002) (Vegesack, near Bremen).

The species, which appears to he widely distributed in the western portion of the Palaearctic Region, does not seem to vary geugraphically. The specimens from Algeria agree with those we have from Eugland and Germany.

A unterorthy peculiarity of this interesting species is the position of the antepygidial bristles. These are placed on elevated and strongly chitinised sockets which are placed some distance from the apical edge of the segment, as in Pulex and allied genera. In Ctenophthalmus, Ceratophyllus, etc., in fact, in the majority of Siphonaptera, the seventh tergite is sinate posteriorly to the antepygidial bristles, so that their sockets are placed at the hind-margin of the segment.

1 \& from Alger, taken off Mus algirus on April 1, 191\%.
1 \& " " " "Aporlemus syleaticus on March 21, 1912.
12. Leptopsylla algira spec. nov. (Pl. NII. fig. 17, 18, 19).
đo. A species with three genal spines, as in L. taschenbergi Wagn. (1898), from Enrope, and L. rethiopicus Roths. (1908), from Tropical Africa, bat differs in the smaller number of teeth in the pronotal comb and the modified abdominal segments of both sexes.

The upper spine of the genal comb (PI. XII. fig. 18) covers the genal process to a greater extent than in $L_{\text {. . aethiopicus. The pronotal comb contains twenty-two }}$ spines on the two sides together, besides a small ventral spine on each side. The proportional lengths of the first and second segments of the tarsi are appreciably different in L. apthiopicus and L. algire, the first segment being longer in the former species than in the latter. The measurements of the mid- and hind-tarsi are in L. algira:

Mid-tarsus: $\delta^{7}, 18,15,11,8,14 ; f, 17,13,10,7,13$.
Hind-tarsus: $\delta, 39,24,16,9,15 ; ~ ¢, 37,21,15,8,14$.
1 Hodified Segments. - δ^{δ}. The movable process (Pl. XII. fig. 17, F) reaches to the apex of the elasper in the species mentioned ahove as well as in the new one, and is more or less convex on the distal side and concave on the proximal side, being of almost even width in taschenbergi with the apical portion slightly tapering (according to Wagner's figure), whereas it is broadest beyond the centre in algira, and almost club-shaped in aethiopicus. It bears five bristles on the distal side, of which the last but one is the longest, the last the second longest, and the other three are thin and nearly equal in length. The clasper is produced into a long process (P), which is slightly enrved towards the "finger" (F) and somewhat widened before the apex. This process bears a long bristle at the distal margin beyond two-thirds of the way from the insertion of the finger to the apex of the process, a small bristle being placed farther apically and a minnte hair on the dorsal side. The mannbrimm (M) is shorter than the elasper in algiva, while it is longer than the elasper in aethiopicus as well as in taschenbergi. The distal portion of the minth sternite is very complicated both in algira and aethiopicus (and presumably also in taschenbergi) and only differs in the detail in the two species, this sternite in algira bearing fewer bristles and being broader at the apex. The eighth steruite (Pl . X11. fig. 17, viii. st.) is triangnlar in a lateral view in algira and has five bristles, whereas in aethopicus it is conical with the tip ronnded and bears a larger number of bristles at and near the apex.
f. This sex is at once distingnished from the of acthiopicus by the seventh sternite (Pl. X1I. fig. 19, vii. st.) being dividel by a deep sinus into a narrow and pointed upper lobe and a broader and longer lower one. The bristles on the eighth tergite are fewer in number in algira than in aethiopicus, the former learing abont a dozen bristles on the widened ventral portion of the segment, while acthiopicus has sixteen or more. The stylet is somewhat longer in algire than in aethiopicus, the head of the receptacnlnm seminis (1 I. XII. fig. 19, r.s.) being also longer and narrower than in aethiopicus.

The antepygidial bristles of algira anl aethiopicus (and perhaps taschenbergi) are remarkable for their arrangement. The δ bears on each side three and the \& four, and these bristles are divided into two sets separated by a sinns of the hind-margin of the seventh tergite, there leing two bristles above the sinus and one below it in the δ, and two above and two below it in the 9 . In L. musculi, sobrinus, pectiniceps, etc., the sockets of the antepygidial bristles of each side are contignons, there being no interspace within the claster.
L. algira was plentiful on Arcicanthis barbarus at Alger and Hammam Rirha together with Ceratophyllus barbarus, both fleas being fonnd on the same individuals of the host as well as in the nest. We also found a few specimens on Crocidura russula and Apodcmus sylvuticus, which are dombtless accidental hosts.
13. Stenoponia tripectinata Tirab. (1902).

Hystrichopsylla tripectinata Tiraboschi, Boll. So: Zool. Ital. xi. p. 16') plate (1902) (Italy).
We proposed Stenoponia for tripectinata and coelestis in Proc. Zool. Soc. Lond., p. 391 (1911). The chief distinctions are the four-segmented labial palpi and the presence of one receptacnlnm seminis instead of two as in IIystrichopsyll\%.
S. tripectinata is a Mediterranean species known from Italy, Asia Minor and the Azores. We met with it only on the Hants Plateanx.
$3 \delta \delta^{2}, \approx$ of from Guelt-es-Stel, off Leriones shawi, April 21 and 23,1912 .
$1 \delta, 2$ if from Khenchela, off Meriones shaur, May 10, 1912.
$9 \delta^{\circ} \delta, 4 i+f$ from Khenchela, off Mus ulgirus, May 8, 191:.
14. Ischnopsyllus unipectinata Tasch. (1880).

Typhlopsylla unipectinata Taschenberg, Die Flöe p. 91 (1880), (Switzerland, off Rhirolophus hipposideros).

1 ó, 1 \& from Guelt-es-Stel, off Rhinolophus ferrum-equinum, April 1\%, 191~.
Only the pronotal comb is developed in this species, but there are some short stont spines at the apices of the metanotum and the first three abdominal tergites which are presumably remuants of tour more combs. From the presence of these vestigial combs we may conclude that species exist or have existed with these combs folly developed. R. unipectinata agrees in all essentials best with Ischnopsyllus, apart from the male genitalia, which are of a different type.

Fig. 1.-Organs of copulation of C'eratophyllus burbarus δ°. viii. $\mathrm{t}=$ eighth ablominal tervita,

Fig. ..-seventh abdominal stemite of thret sperimens ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) of C'eratophyllus lurbarus 7 . r.s. $=$ receptaculum seminis.
K. J. $d c l$.

Fig. 4.-Meso and metanotum of the same
[itG. 5.-seventh abdaminal sternite of Crataphyllus manfu: \ddagger.
K. J. del

к. j. del.

FIG, 1u.-Seventh abdominal sternite of (eratophyllus jareoni meridionalis f. Fiti. 11.- ..
r.fiarrenio.

Ki. J del.

Fifi. 12. Organs of copulation of Ctenophthalmus ruswilac ob. $\mathrm{Cl}=$ clanper, $\mathrm{M}=$ mazmbrimm, $\mathrm{H}=$ process of cla-per, $\mathrm{F}=$ movable procens, viii, nt, ant ix. $-t$. = eighth and ninth abdominal sternites.
Fiti. 1: Suventh stemite (vii. st.) and ventral portion of eishth abduminal tergite (viii. f.) of C'temoghthalmus ruxsulace $?$
K. J. del.

seulana 8. $\quad \mathrm{Cl}=$ clasper, $\mathrm{M}=$ manubrium, P
ix. st. $=$ eighth and nintl abdominal sternites
Fig. I6.-seventl abdominal stervite (vii. st.) and ventral portion of eighth tergite (viii. t.) of /ihadinopsylla maxculand of
为
Fic: 14.-Head of Rhadinopsylla masculana $\frac{7}{}$
FlG. $15 .-$ Organs of copulation of lhadinopsylla masculana o, $\mathrm{Cl}=$ clasper, $\mathrm{M}=$ manubrium, $\mathrm{P}=$ process of clasper, $\mathrm{F}=$ movable process, viij. st, and

Fit：17．－Organs of copulation of Leptopsylla algira $\delta^{\top} . \mathrm{Cl}=$ elasper， $\mathrm{M}=$ manubrium， $\mathrm{P}=$ process of clasper， $\mathrm{F}=$ movable process（＂tinger＂＂），wiii．st．and ix，st．$=$ eighth and ninth abdominal sternites．
Jite．18．－Head of Leptopsylla algira ס

K．J．del．

[^0]: * We express our thanks also in this pulue to Mrs. Beresforl for the very kind permission to trap in her garden, where the following species were obtained: Crscidura russula, t mic unthis burbarux, Mus algirus, Mus alexandrinus, and Apolemus sylvatious.

[^1]: - To this number a few other species must be added whi h were collectel by the IIon. I، W. Rothschik and Ir. E. Hartert on former visits to Algeria in the neighbuurhood of Biskra-namely, Pariudratis riggenbachi koths. (1904), Archacopsylla irinacei manra Jond. \& loohs. (1911), and (iaenopsylha mime Roths. (1909). Msreover, Billet rechrds chernpiz, urexen'i, f.ssicia'us anl cunis from rats taken at Ager I'hilippeville, lione and Constantine (Bull. S'r. I'ath. Erot. I. 2. (1908) r. III).

[^2]: * In Sire. Zovl. 1907. p. 330 and 331 the figures of Ct. ansurgei and Ct. triodmtus hess been transposed : fig. 2 is triodontus and fig. 4 ansorgci, and not vice versa. The same has haprened witio the oullines of these figures reproduced on llate 3 of the Fint. No, Nay. 1907.

